Asksia AI LOGO

Sia

zilin010907's Question
Physics E&M
Posted 24 days ago
为什么第一个x3=t而不是0呢
用中文回答
(iii) Find all solutions to Axundefined=0undefined\mathbf{A} \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{0}} where A\mathbf{A} is the given matrix.
(a) [134021001]\left[\begin{array}{lll}1 & 3 & 4 \\ 0 & 2 & 1 \\ 0 & 0 & 1\end{array}\right]
(b) [104000012]\left[\begin{array}{ccc}1 & 0 & 4 \\ 0 & 0 & 0 \\ 0 & 1 & -2\end{array}\right]
(c) [1020017000010000]\left[\begin{array}{cccc}1 & 0 & 2 & 0 \\ 0 & 1 & -7 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]
Sign in to unlock the answer
Answer from Sia
Posted 24 days ago
Answer
对于每个矩阵,解方程 Axundefined=0undefined \mathbf{A} \overrightarrow{\mathbf{x}} = \overrightarrow{\mathbf{0}} 的所有解如下:
Solution
a
对于矩阵 (a) [134021001] \left[\begin{array}{lll}1 & 3 & 4 \\ 0 & 2 & 1 \\ 0 & 0 & 1\end{array}\right] ,我们可以通过行简化得到其 RREF。该矩阵的 RREF 为 [1340112001] \left[\begin{array}{lll}1 & 3 & 4 \\ 0 & 1 & \frac{1}{2} \\ 0 & 0 & 1\end{array}\right] 。因此,解为 x1+3x2+4x3=0 x_1 + 3x_2 + 4x_3 = 0 x2+12x3=0 x_2 + \frac{1}{2}x_3 = 0 x3=t x_3 = t ,其中 t t 为任意常数。最终解为 xundefined=[3t12tt] \overrightarrow{x} = \begin{bmatrix} -3t \\ -\frac{1}{2}t \\ t \end{bmatrix}
b
对于矩阵 (b) [104000012] \left[\begin{array}{ccc}1 & 0 & 4 \\ 0 & 0 & 0 \\ 0 & 1 & -2\end{array}\right] ,其 RREF 为 [104012000] \left[\begin{array}{ccc}1 & 0 & 4 \\ 0 & 1 & -2 \\ 0 & 0 & 0\end{array}\right] 。因此,解为 x1+4x3=0 x_1 + 4x_3 = 0 x22x3=0 x_2 - 2x_3 = 0 x3=t x_3 = t ,其中 t t 为任意常数。最终解为 xundefined=[4t2tt] \overrightarrow{x} = \begin{bmatrix} -4t \\ 2t \\ t \end{bmatrix}
c
对于矩阵 (c) [1020017000010000] \left[\begin{array}{cccc}1 & 0 & 2 & 0 \\ 0 & 1 & -7 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right] ,其 RREF 已经是最简形式。解为 x1+2x3=0 x_1 + 2x_3 = 0 x27x3=0 x_2 - 7x_3 = 0 x4=0 x_4 = 0 x3=t x_3 = t ,其中 t t 为任意常数。最终解为 xundefined=[2t7tt0] \overrightarrow{x} = \begin{bmatrix} -2t \\ 7t \\ t \\ 0 \end{bmatrix}
Key Concept
解线性方程组的过程涉及将矩阵化为行简化形式,以便找出自由变量和特解。
Explanation
通过将矩阵化为 RREF,我们可以清晰地识别出每个变量的关系,从而找到所有解。

Not the question you are looking for? Ask here!

Enter question by text

Enter question by image

Upgrade to Asksia Pro

Join a AskSia's Pro Plan, and get 24/7 AI tutoring for your reviews, assignments, quizzes and exam preps.

Unlimited chat query usages
Strong algorithms that better know you
Early access to new release features
Study Other Question