Asksia AI LOGO

Sia

хао's Question
Math
Posted 9 months ago
1. Представить в тригонометрической форме числа:
1) 22i2-2 i;
2) -1 ;
3) π4\frac{\pi}{4};
4) 1i3-1-i \sqrt{3};
5) 2+5i-2+5 i.
2. Решить систему: {(2i)x+(3+2i)y=36i(1i)x(2+i)y=1\left\{\begin{array}{c}(2-i) x+(3+2 i) y=3-6 i \\ (1-i) x-(2+i) y=-1\end{array}\right..
3. Выполнить указанные действия:
1) (1+i4)7\left(\frac{1+i}{4}\right)^{7};
2) (1+i3)6(1+i \sqrt{3})^{6};
3) f(z)=(z1)5+1z3f(z)=(z-1)^{5}+\frac{1}{z-3}. Найти f(1+2i)f(1+2 i).
4. Найти и изобразить на комплексной плоскости все значения следующих корней:
1) 1+i12\sqrt[12]{1+i};
2) 14\sqrt[4]{-1};
3) 83\sqrt[3]{8};
4) 86i\sqrt{8-6 i};
5) 3+i1i\sqrt{\frac{\sqrt{3}+i}{1-i}}.
5. Решить квадратное уравнение: z2+(12i)z2i=0z^{2}+(1-2 i) z-2 i=0.

Корни уравнения записать во всех известных формах и изобразить геометрически.
6. Построить множества точек, удовлетворяющих указанным соотношениям:
1) z3i3|z-3 i| \geq 3;
2) Rez+Imz=1\operatorname{Re} z+\operatorname{Im} z=1;
3) z2i+z+2i=8|z-2 i|+|z+2 i|=8;
4) z2i=z+2i|z-2 i|=|z+2 i|.
Sign in to unlock the answer
Answer from Sia
Posted 9 months ago
Solution by Steps
step 1
Convert 22i2-2i to trigonometric form
step 2
Find the modulus r=22i=22r = |2-2i| = 2\sqrt{2}
step 3
Find the argument θ=arg(22i)=π4\theta = \arg(2-2i) = -\frac{\pi}{4}
step 4
Write in trigonometric form: 22(cos(π4)+isin(π4))2\sqrt{2}(\cos(-\frac{\pi}{4}) + i\sin(-\frac{\pi}{4}))
Answer
22(cos(π4)+isin(π4))2\sqrt{2}(\cos(-\frac{\pi}{4}) + i\sin(-\frac{\pi}{4}))
Key Concept
Trigonometric form of a complex number
Explanation
The trigonometric form of a complex number is given by r(cos(θ)+isin(θ))r(\cos(\theta) + i\sin(\theta)), where rr is the modulus and θ\theta is the argument of the complex number.
step 1
Convert 1-1 to trigonometric form
step 2
The modulus r=1=1r = |-1| = 1
step 3
The argument θ=arg(1)=π\theta = \arg(-1) = \pi
step 4
Write in trigonometric form: cos(π)+isin(π)\cos(\pi) + i\sin(\pi)
Answer
cos(π)+isin(π)\cos(\pi) + i\sin(\pi)
Key Concept
Trigonometric form of a complex number
Explanation
For a negative real number, the trigonometric form is found by using the angle π\pi or π-\pi since the number lies on the negative real axis.
step 1
Convert π4\frac{\pi}{4} to trigonometric form
step 2
The modulus r=π4=π4r = |\frac{\pi}{4}| = \frac{\pi}{4}
step 3
The argument θ=arg(π4)=0\theta = \arg(\frac{\pi}{4}) = 0
step 4
Write in trigonometric form: π4(cos(0)+isin(0))\frac{\pi}{4}(\cos(0) + i\sin(0))
Answer
π4(cos(0)+isin(0))\frac{\pi}{4}(\cos(0) + i\sin(0))
Key Concept
Trigonometric form of a real number
Explanation
A real number has an argument of 00 or π\pi, depending on whether it is positive or negative. Here, π4\frac{\pi}{4} is positive, so the argument is 00.
step 1
Convert 1i3-1-i\sqrt{3} to trigonometric form
step 2
Find the modulus r=1i3=2r = |-1-i\sqrt{3}| = 2
step 3
Find the argument θ=arg(1i3)=2π3\theta = \arg(-1-i\sqrt{3}) = -\frac{2\pi}{3}
step 4
Write in trigonometric form: 2(cos(2π3)+isin(2π3))2(\cos(-\frac{2\pi}{3}) + i\sin(-\frac{2\pi}{3}))
Answer
2(cos(2π3)+isin(2π3))2(\cos(-\frac{2\pi}{3}) + i\sin(-\frac{2\pi}{3}))
Key Concept
Trigonometric form of a complex number
Explanation
The trigonometric form is useful for multiplication, division, and finding powers and roots of complex numbers.
step 1
Convert 2+5i-2+5i to trigonometric form
step 2
Find the modulus r=2+5i=29r = |-2+5i| = \sqrt{29}
step 3
Find the argument θ=arg(2+5i)=πtan1(52)\theta = \arg(-2+5i) = \pi - \tan^{-1}(\frac{5}{2})
step 4
Write in trigonometric form: 29(cos(πtan1(52))+isin(πtan1(52)))\sqrt{29}(\cos(\pi - \tan^{-1}(\frac{5}{2})) + i\sin(\pi - \tan^{-1}(\frac{5}{2})))
Answer
29(cos(πtan1(52))+isin(πtan1(52)))\sqrt{29}(\cos(\pi - \tan^{-1}(\frac{5}{2})) + i\sin(\pi - \tan^{-1}(\frac{5}{2})))
Key Concept
Trigonometric form of a complex number
Explanation
The argument of a complex number in the second quadrant is given by πtan1(yx)\pi - \tan^{-1}(\frac{y}{x}) where xx and yy are the real and imaginary parts, respectively.
step 1
Solve the system of equations (2i)x+(3+2i)y=36i(2-i)x + (3+2i)y = 3-6i and (1i)x(2+i)y=1(1-i)x - (2+i)y = -1
step 2
Use substitution or elimination to find xx and yy
step 3
The solution is x=1ix = 1 - i and y=iy = -i
Answer
x=1ix = 1 - i, y=iy = -i
Key Concept
Solving a system of complex linear equations
Explanation
Complex linear systems can be solved using the same techniques as for real systems, such as substitution or elimination.
step 1
Simplify (1+i4)7\left(\frac{1+i}{4}\right)^{7}
step 2
Calculate the seventh power of the complex number 1+i4\frac{1+i}{4}
step 3
The simplified form is 116384+i16384\frac{1}{16384} + \frac{i}{16384}
Answer
116384+i16384\frac{1}{16384} + \frac{i}{16384}
Key Concept
Powers of complex numbers
Explanation
To raise a complex number to a power, convert it to polar form and apply De Moivre's theorem, or use binomial expansion if in rectangular form.
step 1
Simplify (1+i3)6(1+i\sqrt{3})^{6}
step 2
Calculate the sixth power of the complex number 1+i31+i\sqrt{3}
step 3
The simplified form is 6464
Answer
6464
Key Concept
Powers of complex numbers
Explanation
When a complex number is raised to a power, its modulus is raised to that power and its argument is multiplied by that power. In this case, the argument is a multiple of 2π2\pi, resulting in a real number.
step 1
Find f(1+2i)=((1+2i)1)5+1(1+2i)3f(1+2i) = ((1+2i)-1)^5 + \frac{1}{(1+2i)-3}
step 2
Simplify the expression by performing the operations
step 3
The result is 32i5+12(i1)32i^5 + \frac{1}{2(i-1)}
Answer
32i5+12(i1)32i^5 + \frac{1}{2(i-1)}
Key Concept
Evaluating complex functions
Explanation
To evaluate a complex function, substitute the complex number into the function and simplify using algebraic operations.
step 1
Solve the quadratic equation z2+(12i)z2i=0z^2 + (1-2i)z - 2i = 0
step 2
Use the quadratic formula or factorization to find the roots
step 3
The roots are z=1z = -1 and z=2iz = 2i
Answer
z=1z = -1, z=2iz = 2i
Key Concept
Solving quadratic equations with complex coefficients
Explanation
Quadratic equations with complex coefficients can be solved using the quadratic formula, resulting in complex roots.
step 1
Plot the set of points satisfying z3i3|z-3i| \geq 3
step 2
This represents the exterior of a circle centered at 3i3i with radius 33
Answer
Exterior of a circle centered at 3i3i with radius 33
Key Concept
Geometric representation of complex inequalities
Explanation
The inequality zar|z-a| \geq r represents all points in the complex plane that are at least a distance rr away from the complex number aa.
step 1
Plot the set of points satisfying Rez+Imz=1\operatorname{Re} z + \operatorname{Im} z = 1
step 2
This represents a line with a slope of 1-1 and y-intercept at 11
Answer
Line with slope 1-1 and y-intercept 11
Key Concept
Geometric representation of complex equations
Explanation
The equation Rez+Imz=1\operatorname{Re} z + \operatorname{Im} z = 1 represents a line in the complex plane where the sum of the real and imaginary parts is constant.
step 1
Plot the set of points satisfying z2i+z+2i=8|z-2i| + |z+2i| = 8
step 2
This represents an ellipse with foci at 2i2i and 2i-2i and a major axis of length 88
Answer
Ellipse with foci at 2i2i and 2i-2i and major axis length 88
Key Concept
Geometric representation of complex equations
Explanation
The equation za+zb=d|z-a| + |z-b| = d represents an ellipse in the complex plane with foci at aa and bb and a major axis of length dd.
step 1
Plot the set of points satisfying z2i=z+2i|z-2i| = |z+2i|
step 2
This represents the line perpendicular to the line segment joining 2i2i and 2i-2i and bisecting it
Answer
Line perpendicular to and bisecting the line segment between 2i2i and 2i-2i
Key Concept
Geometric representation of complex equations
Explanation
The equation za=zb|z-a| = |z-b| represents the perpendicular bisector of the line segment joining aa and bb in the complex plane.

Not the question you are looking for? Ask here!

Enter question by text

Enter question by image

Unlock Smarter Learning with AskSia Super!

Join Super, our all-in-one AI solution that can greatly improve your learning efficiency.

30% higher accuracy than GPT-4o
Entire learning journey support
The most student-friendly features
Study Other Question