Asksia AI LOGO

Sia

tristanv5's Question
Math
Posted 3 months ago
h=+1/12 or -1/12

8. Приближенное значение интеграла вычисляется по квадратурной формуле
01f(x)dxαf(124h)+βf(12+3h).
\int_{0}^{1} f(x) d x \approx \alpha f\left(\frac{1}{2}-4 h\right)+\beta f\left(\frac{1}{2}+3 h\right) .


Найти постоянные α,β\alpha, \beta и hh, при которых формула точна на произвольном многочлене второй степени.
Sign in to unlock the answer
Answer from Sia
Posted 3 months ago
Solution by Steps
step 1
We start by integrating the constant function 1 from 0 to 1. The integral is given by: 011dx=1 \int_{0}^{1} 1 \, dx = 1
step 2
Next, we integrate the function x x from 0 to 1. The integral is: 01xdx=[x22]01=12=0.5 \int_{0}^{1} x \, dx = \left[ \frac{x^2}{2} \right]_{0}^{1} = \frac{1}{2} = 0.5
step 3
Then, we integrate the function x2 x^2 from 0 to 1. The integral is: 01x2dx=[x33]01=130.33333 \int_{0}^{1} x^2 \, dx = \left[ \frac{x^3}{3} \right]_{0}^{1} = \frac{1}{3} \approx 0.33333
step 4
We now have the results of the integrals: 011dx=1 \int_{0}^{1} 1 \, dx = 1 01xdx=0.5 \int_{0}^{1} x \, dx = 0.5 01x2dx=0.33333 \int_{0}^{1} x^2 \, dx = 0.33333
step 5
We need to solve the system of equations to find α \alpha , β \beta , and h h . The system is: α(124h)+β(12+3h)=1 \alpha \left( \frac{1}{2} - 4h \right) + \beta \left( \frac{1}{2} + 3h \right) = 1 α(124h)2+β(12+3h)2=13 \alpha \left( \frac{1}{2} - 4h \right)^2 + \beta \left( \frac{1}{2} + 3h \right)^2 = \frac{1}{3} 2α(124h)+2β(12+3h)=0.5 2\alpha \left( \frac{1}{2} - 4h \right) + 2\beta \left( \frac{1}{2} + 3h \right) = 0.5
step 6
Solving the system of equations, we find: α=47,β=37,h=114 \alpha = \frac{4}{7}, \quad \beta = \frac{3}{7}, \quad h = \frac{1}{14}
Answer
α=47,β=37,h=114 \alpha = \frac{4}{7}, \beta = \frac{3}{7}, h = \frac{1}{14}
Key Concept
Quadrature formula for approximating integrals
Explanation
The quadrature formula is used to approximate the value of an integral by using a weighted sum of function values at specific points. In this problem, we determined the weights α \alpha and β \beta , and the points 124h \frac{1}{2} - 4h and 12+3h \frac{1}{2} + 3h to make the formula exact for any quadratic polynomial.

Not the question you are looking for? Ask here!

Enter question by text

Enter question by image

Upgrade to Asksia Pro

Join a AskSia's Pro Plan, and get 24/7 AI tutoring for your reviews, assignments, quizzes and exam preps.

Unlimited chat query usages
Strong algorithms that better know you
Early access to new release features
Study Other Question