Asksia AI LOGO

Sia

tristanv5's Question
Math
Posted 7 months ago
h=+1/12 or -1/12

8. Приближенное значение интеграла вычисляется по квадратурной формуле
01f(x)dxαf(124h)+βf(12+3h).
\int_{0}^{1} f(x) d x \approx \alpha f\left(\frac{1}{2}-4 h\right)+\beta f\left(\frac{1}{2}+3 h\right) .


Найти постоянные α,β\alpha, \beta и hh, при которых формула точна на произвольном многочлене второй степени.
Sign in to unlock the answer
Answer from Sia
Posted 7 months ago
Solution by Steps
step 1
We start by integrating the constant function 1 from 0 to 1. The integral is given by: 011dx=1 \int_{0}^{1} 1 \, dx = 1
step 2
Next, we integrate the function x x from 0 to 1. The integral is: 01xdx=[x22]01=12=0.5 \int_{0}^{1} x \, dx = \left[ \frac{x^2}{2} \right]_{0}^{1} = \frac{1}{2} = 0.5
step 3
Then, we integrate the function x2 x^2 from 0 to 1. The integral is: 01x2dx=[x33]01=130.33333 \int_{0}^{1} x^2 \, dx = \left[ \frac{x^3}{3} \right]_{0}^{1} = \frac{1}{3} \approx 0.33333
step 4
We now have the results of the integrals: 011dx=1 \int_{0}^{1} 1 \, dx = 1 01xdx=0.5 \int_{0}^{1} x \, dx = 0.5 01x2dx=0.33333 \int_{0}^{1} x^2 \, dx = 0.33333
step 5
We need to solve the system of equations to find α \alpha , β \beta , and h h . The system is: α(124h)+β(12+3h)=1 \alpha \left( \frac{1}{2} - 4h \right) + \beta \left( \frac{1}{2} + 3h \right) = 1 α(124h)2+β(12+3h)2=13 \alpha \left( \frac{1}{2} - 4h \right)^2 + \beta \left( \frac{1}{2} + 3h \right)^2 = \frac{1}{3} 2α(124h)+2β(12+3h)=0.5 2\alpha \left( \frac{1}{2} - 4h \right) + 2\beta \left( \frac{1}{2} + 3h \right) = 0.5
step 6
Solving the system of equations, we find: α=47,β=37,h=114 \alpha = \frac{4}{7}, \quad \beta = \frac{3}{7}, \quad h = \frac{1}{14}
Answer
α=47,β=37,h=114 \alpha = \frac{4}{7}, \beta = \frac{3}{7}, h = \frac{1}{14}
Key Concept
Quadrature formula for approximating integrals
Explanation
The quadrature formula is used to approximate the value of an integral by using a weighted sum of function values at specific points. In this problem, we determined the weights α \alpha and β \beta , and the points 124h \frac{1}{2} - 4h and 12+3h \frac{1}{2} + 3h to make the formula exact for any quadratic polynomial.

Not the question you are looking for? Ask here!

Enter question by text

Enter question by image

Unlock Smarter Learning with AskSia Super!

Join Super, our all-in-one AI solution that can greatly improve your learning efficiency.

30% higher accuracy than GPT-4o
Entire learning journey support
The most student-friendly features
Study Other Question