Asksia AI LOGO

Sia

boya's Question
Math
Posted 5 months ago

Consider the following matrix AA, and let B=A1B=A^{-1}. Find b31,b32b_{31}, b_{32}, and b33b_{33}. (i.e., find the entries in the third row of A1A^{-1} ).
A=[112410012]
A=\left[\begin{array}{ccc}
1 & 1 & -2 \\
-4 & -1 & 0 \\
0 & -1 & 2
\end{array}\right]
Sign in to unlock the answer
Answer from Sia
Posted 5 months ago
Solution by Steps
step 1
To find the inverse of matrix AA, we first need to write down the matrix AA: A=(112410012) A = \begin{pmatrix} 1 & 1 & -2 \\ -4 & -1 & 0 \\ 0 & -1 & 2 \end{pmatrix}
step 2
Calculate the determinant of matrix AA. The determinant of a 3x3 matrix AA is given by: det(A)=a(eifh)b(difg)+c(dheg) \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) For our matrix AA: det(A)=1((1)(2)(0)(1))1((4)(2)(0)(0))+(2)((4)(1)(1)(0)) \text{det}(A) = 1((-1)(2) - (0)(-1)) - 1((-4)(2) - (0)(0)) + (-2)((-4)(-1) - (-1)(0)) det(A)=1(2)1(8)+(2)(4) \text{det}(A) = 1(-2) - 1(-8) + (-2)(4) det(A)=2+88=2 \text{det}(A) = -2 + 8 - 8 = -2
step 3
Find the matrix of minors for AA. The minor of an element is the determinant of the 2x2 matrix that remains after removing the row and column of that element: Minors(A)=(det(1012)det(4002)det(4101)det(1212)det(1202)det(1101)det(1240)det(1140)det(1141)) \text{Minors}(A) = \begin{pmatrix} \text{det}\begin{pmatrix} -1 & 0 \\ -1 & 2 \end{pmatrix} & \text{det}\begin{pmatrix} -4 & 0 \\ 0 & 2 \end{pmatrix} & \text{det}\begin{pmatrix} -4 & -1 \\ 0 & -1 \end{pmatrix} \\ \text{det}\begin{pmatrix} 1 & -2 \\ -1 & 2 \end{pmatrix} & \text{det}\begin{pmatrix} 1 & -2 \\ 0 & 2 \end{pmatrix} & \text{det}\begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix} \\ \text{det}\begin{pmatrix} 1 & -2 \\ -4 & 0 \end{pmatrix} & \text{det}\begin{pmatrix} 1 & 1 \\ -4 & 0 \end{pmatrix} & \text{det}\begin{pmatrix} 1 & 1 \\ -4 & -1 \end{pmatrix} \end{pmatrix} =((1)(2)(0)(1)(4)(2)(0)(0)(4)(1)(1)(0)(1)(2)(2)(1)(1)(2)(2)(0)(1)(1)(1)(0)(1)(0)(2)(4)(1)(0)(1)(4)(1)(1)(1)(4)) = \begin{pmatrix} (-1)(2) - (0)(-1) & (-4)(2) - (0)(0) & (-4)(-1) - (-1)(0) \\ (1)(2) - (-2)(-1) & (1)(2) - (-2)(0) & (1)(-1) - (1)(0) \\ (1)(0) - (-2)(-4) & (1)(0) - (1)(-4) & (1)(-1) - (1)(-4) \end{pmatrix} =(2842221080+41+4) = \begin{pmatrix} -2 & -8 & 4 \\ 2 - 2 & 2 & -1 \\ 0 - 8 & 0 + 4 & -1 + 4 \end{pmatrix} =(284021843) = \begin{pmatrix} -2 & -8 & 4 \\ 0 & 2 & -1 \\ -8 & 4 & 3 \end{pmatrix}
step 4
Find the matrix of cofactors by applying the checkerboard pattern of signs to the matrix of minors: Cofactors(A)=(284021843) \text{Cofactors}(A) = \begin{pmatrix} -2 & 8 & 4 \\ 0 & 2 & 1 \\ -8 & -4 & 3 \end{pmatrix}
step 5
Transpose the matrix of cofactors to get the adjugate matrix: Adj(A)=(208824413) \text{Adj}(A) = \begin{pmatrix} -2 & 0 & -8 \\ 8 & 2 & -4 \\ 4 & 1 & 3 \end{pmatrix}
step 6
Finally, divide the adjugate matrix by the determinant to get the inverse of AA: A1=1det(A)Adj(A)=12(208824413) A^{-1} = \frac{1}{\text{det}(A)} \text{Adj}(A) = \frac{1}{-2} \begin{pmatrix} -2 & 0 & -8 \\ 8 & 2 & -4 \\ 4 & 1 & 3 \end{pmatrix} =(10441221232) = \begin{pmatrix} 1 & 0 & 4 \\ -4 & -1 & 2 \\ -2 & -\frac{1}{2} & -\frac{3}{2} \end{pmatrix}
step 7
The entries in the third row of A1A^{-1} are: b31=2,b32=12,b33=32 b_{31} = -2, \quad b_{32} = -\frac{1}{2}, \quad b_{33} = -\frac{3}{2}
Answer
The entries in the third row of A1A^{-1} are b31=2b_{31} = -2, b32=12b_{32} = -\frac{1}{2}, and b33=32b_{33} = -\frac{3}{2}.
Key Concept
Matrix Inversion
Explanation
To find the inverse of a 3x3 matrix, we use the determinant and the adjugate matrix. The inverse is given by the adjugate matrix divided by the determinant.

Not the question you are looking for? Ask here!

Enter question by text

Enter question by image

Upgrade to Asksia Pro

Join a AskSia's Pro Plan, and get 24/7 AI tutoring for your reviews, assignments, quizzes and exam preps.

Unlimited chat query usages
Strong algorithms that better know you
Early access to new release features
Study Other Question