Asksia AI LOGO

Sia

Question
Math
Posted 5 months ago

Evaluate the iterated integral.
11(22ex+eydy)dx=
\int_{-1}^{1}\left(\int_{-2}^{2} e^{x}+e^{y} d y\right) d x=


Choose 1 answer:
(A) 2e2+4e4e12e22 e^{2}+4 e-4 e^{-1}-2 e^{-2}
(B) e24e4e1+e2e^{2}-4 e-4 e^{-1}+e^{-2}
(C) 4e2+4e24 e^{2}+4 e^{-2}
(D) 2e22e22 e^{2}-2 e^{-2}
Sign in to unlock the answer
Answer from Sia
Posted 5 months ago
Solution by Steps
step 2
Since exe^{x} is a constant with respect to yy, the integral becomes ex22dy+22eydye^{x} \int_{-2}^{2} dy + \int_{-2}^{2} e^{y} \, dy
step 3
Compute the integrals: ex(y22)+(ey22)e^{x} \cdot (y \big|_{-2}^{2}) + (e^{y} \big|_{-2}^{2})
step 4
Substitute the limits of integration: ex(2(2))+(e2e2)e^{x} \cdot (2 - (-2)) + (e^{2} - e^{-2})
step 5
Simplify the expression: 4ex+(e2e2)4e^{x} + (e^{2} - e^{-2})
step 6
Evaluate the outer integral with respect to xx: 11(4ex+e2e2)dx\int_{-1}^{1} (4e^{x} + e^{2} - e^{-2}) \, dx
step 7
Split the integral: 411exdx+11(e2e2)dx4 \int_{-1}^{1} e^{x} \, dx + \int_{-1}^{1} (e^{2} - e^{-2}) \, dx
step 8
Since e2e2e^{2} - e^{-2} is constant with respect to xx, the second integral becomes (e2e2)(x11)(e^{2} - e^{-2}) \cdot (x \big|_{-1}^{1})
step 9
Compute the integrals: 4(ex11)+(e2e2)(1(1))4(e^{x} \big|_{-1}^{1}) + (e^{2} - e^{-2}) \cdot (1 - (-1))
step 10
Substitute the limits of integration: 4(e1e1)+(e2e2)24(e^{1} - e^{-1}) + (e^{2} - e^{-2}) \cdot 2
step 11
Simplify the expression: 4(ee1)+2(e2e2)4(e - e^{-1}) + 2(e^{2} - e^{-2})
step 12
Factor out common terms: 4e4e1+2e22e24e - 4e^{-1} + 2e^{2} - 2e^{-2}
step 13
Combine like terms: 2e2+4e4e12e22e^{2} + 4e - 4e^{-1} - 2e^{-2}
A
Key Concept
Iterated Integration
Explanation
When evaluating an iterated integral, we integrate with respect to one variable at a time while treating the other variable as a constant. After integrating with respect to the inner variable, we substitute the limits of integration for that variable, and then integrate the resulting expression with respect to the outer variable.

Not the question you are looking for? Ask here!

Enter question by text

Enter question by image

Upgrade to Asksia Pro

Join a AskSia's Pro Plan, and get 24/7 AI tutoring for your reviews, assignments, quizzes and exam preps.

Unlimited chat query usages
Strong algorithms that better know you
Early access to new release features
Study Other Question