Asksia AI LOGO

Sia

Question
Math
Posted 7 months ago

Find cos(ABC60)\cos \left(\angle A B C-60^{\circ}\right).
Choose 1 answer:
(A) 310+253\frac{3}{10}+\frac{2}{5} \sqrt{3}
(B) 253103\frac{2}{5}-\frac{3}{10} \sqrt{3}
(C) 25+3103\frac{2}{5}+\frac{3}{10} \sqrt{3}
() 310253\frac{3}{10}-\frac{2}{5} \sqrt{3}
Sign in to unlock the answer
Answer from Sia
Posted 7 months ago
Solution by Steps
step 2
Given that ABC \angle ABC is part of a right triangle, we can find cosABC \cos \angle ABC by using the adjacent side over the hypotenuse: cosABC=BCAB=810=45 \cos \angle ABC = \frac{BC}{AB} = \frac{8}{10} = \frac{4}{5}
step 3
We also know that cos60=12 \cos 60^{\circ} = \frac{1}{2} and sin60=32 \sin 60^{\circ} = \frac{\sqrt{3}}{2}
step 4
Applying the cosine subtraction formula: cos(ABC60)=cosABCcos60+sinABCsin60 \cos(\angle ABC - 60^{\circ}) = \cos \angle ABC \cdot \cos 60^{\circ} + \sin \angle ABC \cdot \sin 60^{\circ}
step 5
Substituting the known values: cos(ABC60)=4512+sinABC32 \cos(\angle ABC - 60^{\circ}) = \frac{4}{5} \cdot \frac{1}{2} + \sin \angle ABC \cdot \frac{\sqrt{3}}{2}
step 6
To find sinABC \sin \angle ABC , we use the opposite side over the hypotenuse: sinABC=ACAB=610=35 \sin \angle ABC = \frac{AC}{AB} = \frac{6}{10} = \frac{3}{5}
step 7
Now substitute sinABC \sin \angle ABC into the equation: cos(ABC60)=4512+3532 \cos(\angle ABC - 60^{\circ}) = \frac{4}{5} \cdot \frac{1}{2} + \frac{3}{5} \cdot \frac{\sqrt{3}}{2}
step 8
Simplify the expression: cos(ABC60)=25+3532 \cos(\angle ABC - 60^{\circ}) = \frac{2}{5} + \frac{3}{5} \cdot \frac{\sqrt{3}}{2}
step 9
Combine the terms: cos(ABC60)=25+3310 \cos(\angle ABC - 60^{\circ}) = \frac{2}{5} + \frac{3\sqrt{3}}{10}
1 Answer
C
Key Concept
Cosine subtraction formula
Explanation
The cosine subtraction formula allows us to find the cosine of the difference between two angles. In this case, it is used to find cos(ABC60) \cos(\angle ABC - 60^{\circ}) by knowing the cosine and sine of ABC \angle ABC and the cosine and sine of 60 60^{\circ} .

Not the question you are looking for? Ask here!

Enter question by text

Enter question by image

Unlock Smarter Learning with AskSia Super!

Join Super, our all-in-one AI solution that can greatly improve your learning efficiency.

30% higher accuracy than GPT-4o
Entire learning journey support
The most student-friendly features
Study Other Question