Asksia AI LOGO

Sia

Question
Math
Posted 3 months ago

Find the indicated partial derivatives
w=xy+yz+zx,x=rcosθ,y=rsinθ,z=rθwr,wθ when r=2,θ=π/2
\begin{array}{l}
w=x y+y z+z x, \quad x=r \cos \theta, \quad y=r \sin \theta, \quad z=r \theta \\
\frac{\partial w}{\partial r}, \frac{\partial w}{\partial \theta} \quad \text { when } r=2, \theta=\pi / 2
\end{array}
Sign in to unlock the answer
Answer from Sia
Posted 3 months ago
Solution by Steps
step 1
Given the function w=xy+yz+zxw = xy + yz + zx with x=rcosθx = r \cos \theta, y=rsinθy = r \sin \theta, and z=rθz = r \theta, we need to find the partial derivatives wr\frac{\partial w}{\partial r} and wθ\frac{\partial w}{\partial \theta} at r=2r = 2 and θ=π2\theta = \frac{\pi}{2}
step 2
First, we differentiate ww with respect to rr: wr=r(rcosθrsinθ+rsinθrθ+rθrcosθ) \frac{\partial w}{\partial r} = \frac{\partial}{\partial r} (r \cos \theta \cdot r \sin \theta + r \sin \theta \cdot r \theta + r \theta \cdot r \cos \theta) =r(r2cosθsinθ+r2sinθθ+r2θcosθ) = \frac{\partial}{\partial r} (r^2 \cos \theta \sin \theta + r^2 \sin \theta \theta + r^2 \theta \cos \theta) =2rcosθsinθ+2rsinθθ+2rθcosθ = 2r \cos \theta \sin \theta + 2r \sin \theta \theta + 2r \theta \cos \theta =2r(cosθsinθ+sinθθ+θcosθ) = 2r (\cos \theta \sin \theta + \sin \theta \theta + \theta \cos \theta) \]
step 3
Next, we differentiate ww with respect to θ\theta: wθ=θ(rcosθrsinθ+rsinθrθ+rθrcosθ) \frac{\partial w}{\partial \theta} = \frac{\partial}{\partial \theta} (r \cos \theta \cdot r \sin \theta + r \sin \theta \cdot r \theta + r \theta \cdot r \cos \theta) =θ(r2cosθsinθ+r2sinθθ+r2θcosθ) = \frac{\partial}{\partial \theta} (r^2 \cos \theta \sin \theta + r^2 \sin \theta \theta + r^2 \theta \cos \theta) =r2(cosθcosθsinθsinθ+sinθ+θcosθθsinθ) = r^2 (\cos \theta \cos \theta - \sin \theta \sin \theta + \sin \theta + \theta \cos \theta - \theta \sin \theta) =r2(cos2θsin2θ+sinθ+θcosθθsinθ) = r^2 (\cos^2 \theta - \sin^2 \theta + \sin \theta + \theta \cos \theta - \theta \sin \theta) \]
step 4
Now, we evaluate wr\frac{\partial w}{\partial r} at r=2r = 2 and θ=π2\theta = \frac{\pi}{2}: wrr=2,θ=π2=22(cosπ2sinπ2+sinπ2π2+π2cosπ2) \frac{\partial w}{\partial r} \bigg|_{r=2, \theta=\frac{\pi}{2}} = 2 \cdot 2 (\cos \frac{\pi}{2} \sin \frac{\pi}{2} + \sin \frac{\pi}{2} \cdot \frac{\pi}{2} + \frac{\pi}{2} \cos \frac{\pi}{2}) =4(01+1π2+π20) = 4 (0 \cdot 1 + 1 \cdot \frac{\pi}{2} + \frac{\pi}{2} \cdot 0) =4π2 = 4 \cdot \frac{\pi}{2} =2π = 2\pi \]
step 5
Finally, we evaluate wθ\frac{\partial w}{\partial \theta} at r=2r = 2 and θ=π2\theta = \frac{\pi}{2}: wθr=2,θ=π2=22(cos2π2sin2π2+sinπ2+π2cosπ2π2sinπ2) \frac{\partial w}{\partial \theta} \bigg|_{r=2, \theta=\frac{\pi}{2}} = 2^2 (\cos^2 \frac{\pi}{2} - \sin^2 \frac{\pi}{2} + \sin \frac{\pi}{2} + \frac{\pi}{2} \cos \frac{\pi}{2} - \frac{\pi}{2} \sin \frac{\pi}{2}) =4(01+1+0π2) = 4 (0 - 1 + 1 + 0 - \frac{\pi}{2}) =4(0π2) = 4 (0 - \frac{\pi}{2}) =2π = -2\pi \]
Answer
wr=2π\frac{\partial w}{\partial r} = 2\pi and wθ=2π\frac{\partial w}{\partial \theta} = -2\pi
Key Concept
Partial Derivatives
Explanation
Partial derivatives measure how a function changes as its input variables change. Here, we computed the partial derivatives of ww with respect to rr and θ\theta and evaluated them at specific values.

Not the question you are looking for? Ask here!

Enter question by text

Enter question by image

Upgrade to Asksia Pro

Join a AskSia's Pro Plan, and get 24/7 AI tutoring for your reviews, assignments, quizzes and exam preps.

Unlimited chat query usages
Strong algorithms that better know you
Early access to new release features
Study Other Question