Asksia AI LOGO

Sia

Question
Math
Posted 6 months ago
Math Problem: Let A=(1,11,2),B=(3,4,1)A=(1,-11,2), B=(3,-4,1), and C=(2,1,1)C=(-2,1,-1). Compute ABC\angle A B C, in degrees.
Sign in to unlock the answer
Answer from Sia
Posted 6 months ago
Solution by Steps
step 1
To find the angle ABC \angle ABC , we first need to find the vectors ABundefined \overrightarrow{AB} and BCundefined \overrightarrow{BC}
step 2
The vector ABundefined \overrightarrow{AB} is found by subtracting coordinates of A A from B B : ABundefined=BA=(31,4(11),12) \overrightarrow{AB} = B - A = (3 - 1, -4 - (-11), 1 - 2)
step 3
Simplifying the coordinates of ABundefined \overrightarrow{AB} gives us ABundefined=(2,7,1) \overrightarrow{AB} = (2, 7, -1)
step 4
Similarly, the vector BCundefined \overrightarrow{BC} is BCundefined=CB=(23,1(4),11) \overrightarrow{BC} = C - B = (-2 - 3, 1 - (-4), -1 - 1)
step 5
Simplifying the coordinates of BCundefined \overrightarrow{BC} gives us BCundefined=(5,5,2) \overrightarrow{BC} = (-5, 5, -2)
step 6
The angle between two vectors uundefined \overrightarrow{u} and vundefined \overrightarrow{v} can be found using the dot product formula: cos(θ)=uundefinedvundefineduundefinedvundefined \cos(\theta) = \frac{\overrightarrow{u} \cdot \overrightarrow{v}}{|\overrightarrow{u}| |\overrightarrow{v}|}
step 7
Calculate the dot product ABundefinedBCundefined=(2)(5)+(7)(5)+(1)(2) \overrightarrow{AB} \cdot \overrightarrow{BC} = (2)(-5) + (7)(5) + (-1)(-2)
step 8
Simplifying the dot product gives us ABundefinedBCundefined=10+35+2=27 \overrightarrow{AB} \cdot \overrightarrow{BC} = -10 + 35 + 2 = 27
step 9
Calculate the magnitudes ABundefined=22+72+(1)2 |\overrightarrow{AB}| = \sqrt{2^2 + 7^2 + (-1)^2} and BCundefined=(5)2+52+(2)2 |\overrightarrow{BC}| = \sqrt{(-5)^2 + 5^2 + (-2)^2}
step 10
Simplifying the magnitudes gives us ABundefined=4+49+1=54 |\overrightarrow{AB}| = \sqrt{4 + 49 + 1} = \sqrt{54} and BCundefined=25+25+4=54 |\overrightarrow{BC}| = \sqrt{25 + 25 + 4} = \sqrt{54}
step 11
Now we can find cos(θ)=275454 \cos(\theta) = \frac{27}{\sqrt{54} \sqrt{54}}
step 12
Simplifying cos(θ) \cos(\theta) gives us cos(θ)=2754=12 \cos(\theta) = \frac{27}{54} = \frac{1}{2}
step 13
To find the angle in degrees, we use the inverse cosine function: θ=cos1(12) \theta = \cos^{-1}\left(\frac{1}{2}\right)
step 14
The value of cos1(12) \cos^{-1}\left(\frac{1}{2}\right) is 60 60^\circ
Answer
ABC=60 \angle ABC = 60^\circ
Key Concept
Angle between two vectors using dot product
Explanation
The angle between two vectors is calculated by taking the inverse cosine of the dot product of the vectors divided by the product of their magnitudes.

Not the question you are looking for? Ask here!

Enter question by text

Enter question by image

Upgrade to Asksia Pro

Join a AskSia's Pro Plan, and get 24/7 AI tutoring for your reviews, assignments, quizzes and exam preps.

Unlimited chat query usages
Strong algorithms that better know you
Early access to new release features
Study Other Question