Asksia AI LOGO

Sia

Question
Math
Posted 8 months ago

The distance dd of a point PP to the line through points AA and BB is the length of the component of AP\overline{A P} that is orthogonal to AB\overline{A B}, as indicated in the diagram.

So the distance from P=(2,5,0)P=(2,5,0) to the line through the points A=(0,3,3)A=(0,3,-3) and B=(3,5,0)B=(-3,-5,0) is
Sign in to unlock the answer
Answer from Sia
Posted 8 months ago
Solution by Steps
step 1
To find the distance from point P=(2,5,0)P = (2, 5, 0) to the line through points A=(0,3,3)A = (0, 3, -3) and B=(3,5,0)B = (-3, -5, 0), we first need to determine the direction vector of the line ABAB. The direction vector ABundefined\overrightarrow{AB} is calculated as follows: ABundefined=BA=(30,53,0+3)=(3,8,3) \overrightarrow{AB} = B - A = (-3 - 0, -5 - 3, 0 + 3) = (-3, -8, 3)
step 2
Next, we find the vector APundefined\overrightarrow{AP} from point AA to point PP: APundefined=PA=(20,53,0+3)=(2,2,3) \overrightarrow{AP} = P - A = (2 - 0, 5 - 3, 0 + 3) = (2, 2, 3)
step 3
We now need to project APundefined\overrightarrow{AP} onto ABundefined\overrightarrow{AB}. The projection formula is: projABundefinedAPundefined=APundefinedABundefinedABundefinedABundefinedABundefined \text{proj}_{\overrightarrow{AB}} \overrightarrow{AP} = \frac{\overrightarrow{AP} \cdot \overrightarrow{AB}}{\overrightarrow{AB} \cdot \overrightarrow{AB}} \overrightarrow{AB} First, calculate the dot product APundefinedABundefined\overrightarrow{AP} \cdot \overrightarrow{AB}: APundefinedABundefined=(2)(3)+(2)(8)+(3)(3)=616+9=13 \overrightarrow{AP} \cdot \overrightarrow{AB} = (2)(-3) + (2)(-8) + (3)(3) = -6 - 16 + 9 = -13 Next, calculate ABundefinedABundefined\overrightarrow{AB} \cdot \overrightarrow{AB}: ABundefinedABundefined=(3)2+(8)2+(3)2=9+64+9=82 \overrightarrow{AB} \cdot \overrightarrow{AB} = (-3)^2 + (-8)^2 + (3)^2 = 9 + 64 + 9 = 82 Thus, the projection is: projABundefinedAPundefined=1382ABundefined=1382(3,8,3)=(3982,10482,3982) \text{proj}_{\overrightarrow{AB}} \overrightarrow{AP} = \frac{-13}{82} \overrightarrow{AB} = \frac{-13}{82} (-3, -8, 3) = \left( \frac{39}{82}, \frac{104}{82}, \frac{-39}{82} \right)
step 4
The orthogonal component of APundefined\overrightarrow{AP} to ABundefined\overrightarrow{AB} is: APundefinedprojABundefinedAPundefined=(2,2,3)(3982,10482,3982)=(23982,210482,3+3982)=(12382,6082,28582) \overrightarrow{AP} - \text{proj}_{\overrightarrow{AB}} \overrightarrow{AP} = \left( 2, 2, 3 \right) - \left( \frac{39}{82}, \frac{104}{82}, \frac{-39}{82} \right) = \left( 2 - \frac{39}{82}, 2 - \frac{104}{82}, 3 + \frac{39}{82} \right) = \left( \frac{123}{82}, \frac{60}{82}, \frac{285}{82} \right)
step 5
Finally, the distance dd is the magnitude of this orthogonal component: d=(12382,6082,28582)=(12382)2+(6082)2+(28582)2=151296724+36006724+812256724=999546724=9995482=315.97823.8651 d = \left| \left| \left( \frac{123}{82}, \frac{60}{82}, \frac{285}{82} \right) \right| \right| = \sqrt{ \left( \frac{123}{82} \right)^2 + \left( \frac{60}{82} \right)^2 + \left( \frac{285}{82} \right)^2 } = \sqrt{ \frac{15129}{6724} + \frac{3600}{6724} + \frac{81225}{6724} } = \sqrt{ \frac{99954}{6724} } = \frac{\sqrt{99954}}{82} = \frac{315.97}{82} \approx 3.8651
Answer
The distance from point P=(2,5,0)P = (2, 5, 0) to the line through points A=(0,3,3)A = (0, 3, -3) and B=(3,5,0)B = (-3, -5, 0) is approximately 3.86513.8651.
Key Concept
Distance from a point to a line in 3D space
Explanation
The distance from a point to a line in 3D space is found by projecting the vector from the point to a point on the line onto the direction vector of the line, and then finding the orthogonal component of this projection. The magnitude of this orthogonal component gives the distance.

Not the question you are looking for? Ask here!

Enter question by text

Enter question by image

Unlock Smarter Learning with AskSia Super!

Join Super, our all-in-one AI solution that can greatly improve your learning efficiency.

30% higher accuracy than GPT-4o
Entire learning journey support
The most student-friendly features
Study Other Question