Asksia AI LOGO

Sia

青州's Question
Chemistry
Posted 5 months ago

What is the ΔG\Delta G^{\circ} for the following reaction from the equilibrium constant at the temperature given?
CaCO33( s)CaO(s)+CO2( g)T=900CKp=1.04
\mathrm{CaCO}_{3} 3(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \mathrm{T}=900^{\circ} \mathrm{C} \mathrm{Kp}=1.04
Sign in to unlock the answer
Answer from Sia
Posted 5 months ago
Solution
1
Identify the reaction: The given reaction is CaCO3(s)CaO(s)+CO2(g)\mathrm{CaCO}_{3}(\mathrm{s}) \rightarrow \mathrm{CaO}(\mathrm{s}) + \mathrm{CO}_{2}(\mathrm{g}) at T=900CT=900^{\circ} \mathrm{C} with Kp=1.04\mathrm{Kp}=1.04
2
Use the relationship between $\Delta G^{\circ}$ and $K_p$: The standard Gibbs free energy change (ΔG\Delta G^{\circ}) for a reaction can be calculated using the equation: ΔG=RTlnKp \Delta G^{\circ} = -RT \ln K_p where RR is the gas constant (8.314Jmol1K18.314 \, \mathrm{J \, mol^{-1} \, K^{-1}}) and TT is the temperature in Kelvin
3
Convert temperature to Kelvin: T=900C+273.15=1173.15K T = 900^{\circ} \mathrm{C} + 273.15 = 1173.15 \, \mathrm{K}
4
Calculate $\Delta G^{\circ}$: ΔG=(8.314Jmol1K1)×(1173.15K)×ln(1.04) \Delta G^{\circ} = - (8.314 \, \mathrm{J \, mol^{-1} \, K^{-1}}) \times (1173.15 \, \mathrm{K}) \times \ln(1.04) ΔG(8.314×1173.15)×0.0392 \Delta G^{\circ} \approx - (8.314 \times 1173.15) \times 0.0392 ΔG384.1Jmol1 \Delta G^{\circ} \approx - 384.1 \, \mathrm{J \, mol^{-1}}
Answer
ΔG384.1Jmol1\Delta G^{\circ} \approx - 384.1 \, \mathrm{J \, mol^{-1}}
Key Concept
Relationship between Gibbs free energy change and equilibrium constant
Explanation
The standard Gibbs free energy change (ΔG\Delta G^{\circ}) for a reaction can be determined from the equilibrium constant (KpK_p) using the equation ΔG=RTlnKp\Delta G^{\circ} = -RT \ln K_p. This relationship shows how the spontaneity of a reaction is related to its equilibrium position.

Not the question you are looking for? Ask here!

Enter question by text

Enter question by image

Upgrade to Asksia Pro

Join a AskSia's Pro Plan, and get 24/7 AI tutoring for your reviews, assignments, quizzes and exam preps.

Unlimited chat query usages
Strong algorithms that better know you
Early access to new release features
Study Other Question