Asksia AI LOGO

Sia

昕雨's Question
Math
Posted about 1 month ago

(2x3+4x2+4x23x23+23x5cos2x+4x5sinx)dx==\begin{array}{l}\int\left(-2 x^{3}+4 x-2+\frac{4}{x^{2}}-\frac{3}{\sqrt[3]{x^{2}}}+2 \cdot 3^{x}-\frac{5}{\cos ^{2} x}+\frac{4}{x}-5 \sin x\right) d x= \\ =\end{array}
Sign in to unlock the answer
Answer from Sia
Posted about 1 month ago
Solution by Steps
step 1
To integrate the expression, we have:

(2x3+4x2+4x23x23+23x5cos2x+4x5sinx)dx=x42x33+2x22x4x+4log(x)+23xlog(3)+5cos(x)5tan(x)+C \int\left(-2 x^{3}+4 x-2+\frac{4}{x^{2}}-\frac{3}{\sqrt[3]{x^{2}}}+2 \cdot 3^{x}-\frac{5}{\cos^{2} x}+\frac{4}{x}-5 \sin x\right) dx = -\frac{x^{4}}{2} - \frac{x^{3}}{\sqrt{3}} + 2 x^{2} - 2 x - \frac{4}{x} + 4 \log(x) + \frac{2 \cdot 3^{x}}{\log(3)} + 5 \cos(x) - 5 \tan(x) + C 
step 2
The integral can also be expressed as:

23xlog(3)3x5+23x412x3+12x224xlog(x)30xcos(x)+30xtan(x)+246x+C \frac{2 \cdot 3^{x}}{\log(3)} - \frac{3 x^{5} + 2 \sqrt{3} x^{4} - 12 x^{3} + 12 x^{2} - 24 x \log(x) - 30 x \cos(x) + 30 x \tan(x) + 24}{6 x} + C 
step 3
Another form of the integral is:

4x2x+2x2x33x42+5cos(x)+23xlog(3)+4log(x)5sin(x)cos(x)+C -\frac{4}{x} - 2 x + 2 x^{2} - \frac{x^{3}}{\sqrt{3}} - \frac{x^{4}}{2} + 5 \cos(x) + \frac{2 \cdot 3^{x}}{\log(3)} + 4 \log(x) - \frac{5 \sin(x)}{\cos(x)} + C 
step 4
The final expression can be simplified further:

3x5log(3)+23x4log(3)12x3log(3)+12x2log(3)43x+1x24xlog(3)log(x)+30xlog(3)tan(x)30xlog(3)cos(x)+24log(3)6xlog(3)+C -\frac{3 x^{5} \log(3) + 2 \sqrt{3} x^{4} \log(3) - 12 x^{3} \log(3) + 12 x^{2} \log(3) - 4 \cdot 3^{x + 1} x - 24 x \log(3) \log(x) + 30 x \log(3) \tan(x) - 30 x \log(3) \cos(x) + 24 \log(3)}{6 x \log(3)} + C 

Answer
The indefinite integral evaluates to: x42x33+2x22x4x+4log(x)+23xlog(3)+5cos(x)5tan(x)+C -\frac{x^{4}}{2} - \frac{x^{3}}{\sqrt{3}} + 2 x^{2} - 2 x - \frac{4}{x} + 4 \log(x) + \frac{2 \cdot 3^{x}}{\log(3)} + 5 \cos(x) - 5 \tan(x) + C
Key Concept
Integration of polynomial and trigonometric functions
Explanation
The solution involves integrating a combination of polynomial, logarithmic, and trigonometric functions, applying standard integration techniques.

Not the question you are looking for? Ask here!

Enter question by text

Enter question by image

Unlock Smarter Learning with AskSia Super!

Join Super, our all-in-one AI solution that can greatly improve your learning efficiency.

30% higher accuracy than GPT-4o
Entire learning journey support
The most student-friendly features
Study Other Question