∫(−2x3+4x−2+4x2−3x23+2⋅3x−5cos2x+4x−5sinx)dx==\begin{array}{l}\int\left(-2 x^{3}+4 x-2+\frac{4}{x^{2}}-\frac{3}{\sqrt[3]{x^{2}}}+2 \cdot 3^{x}-\frac{5}{\cos ^{2} x}+\frac{4}{x}-5 \sin x\right) d x= \\ =\end{array}∫(−2x3+4x−2+x24−3x23+2⋅3x−cos2x5+x4−5sinx)dx==
0 Like
1 Answer
Share
∫(−2x3+4x−2+4x2−3x23+2⋅3x−5cos2x+4x−5sinx)dx=−x42−x33+2x2−2x−4x+4log(x)+2⋅3xlog(3)+5cos(x)−5tan(x)+C \int\left(-2 x^{3}+4 x-2+\frac{4}{x^{2}}-\frac{3}{\sqrt[3]{x^{2}}}+2 \cdot 3^{x}-\frac{5}{\cos^{2} x}+\frac{4}{x}-5 \sin x\right) dx = -\frac{x^{4}}{2} - \frac{x^{3}}{\sqrt{3}} + 2 x^{2} - 2 x - \frac{4}{x} + 4 \log(x) + \frac{2 \cdot 3^{x}}{\log(3)} + 5 \cos(x) - 5 \tan(x) + C ∫(−2x3+4x−2+x24−3x23+2⋅3x−cos2x5+x4−5sinx)dx=−2x4−3x3+2x2−2x−x4+4log(x)+log(3)2⋅3x+5cos(x)−5tan(x)+C
2⋅3xlog(3)−3x5+23x4−12x3+12x2−24xlog(x)−30xcos(x)+30xtan(x)+246x+C \frac{2 \cdot 3^{x}}{\log(3)} - \frac{3 x^{5} + 2 \sqrt{3} x^{4} - 12 x^{3} + 12 x^{2} - 24 x \log(x) - 30 x \cos(x) + 30 x \tan(x) + 24}{6 x} + C log(3)2⋅3x−6x3x5+23x4−12x3+12x2−24xlog(x)−30xcos(x)+30xtan(x)+24+C
−4x−2x+2x2−x33−x42+5cos(x)+2⋅3xlog(3)+4log(x)−5sin(x)cos(x)+C -\frac{4}{x} - 2 x + 2 x^{2} - \frac{x^{3}}{\sqrt{3}} - \frac{x^{4}}{2} + 5 \cos(x) + \frac{2 \cdot 3^{x}}{\log(3)} + 4 \log(x) - \frac{5 \sin(x)}{\cos(x)} + C −x4−2x+2x2−3x3−2x4+5cos(x)+log(3)2⋅3x+4log(x)−cos(x)5sin(x)+C
−3x5log(3)+23x4log(3)−12x3log(3)+12x2log(3)−4⋅3x+1x−24xlog(3)log(x)+30xlog(3)tan(x)−30xlog(3)cos(x)+24log(3)6xlog(3)+C -\frac{3 x^{5} \log(3) + 2 \sqrt{3} x^{4} \log(3) - 12 x^{3} \log(3) + 12 x^{2} \log(3) - 4 \cdot 3^{x + 1} x - 24 x \log(3) \log(x) + 30 x \log(3) \tan(x) - 30 x \log(3) \cos(x) + 24 \log(3)}{6 x \log(3)} + C −6xlog(3)3x5log(3)+23x4log(3)−12x3log(3)+12x2log(3)−4⋅3x+1x−24xlog(3)log(x)+30xlog(3)tan(x)−30xlog(3)cos(x)+24log(3)+C
0 Comment
Not the question you are looking for? Ask here!
Enter question by text
Enter question by image
Unlock Smarter Learning with AskSia Super!
Join Super, our all-in-one AI solution that can greatly improve your learning efficiency.