(1+x)n=1+nx+n(n−1)1×2x2+…+n(n−1)⋅(n−r+1)1×2x…×rx+…(∣x∣<1,n∈R))(1+x)12=\begin{array}{l}\left.(1+x)^{n}=1+n x+\frac{n(n-1)}{1 \times 2} x^{2}+\ldots+\frac{n(n-1) \cdot(n-r+1)}{1 \times 2 x \ldots \times r} x+\ldots(|x|<1, n \in R)\right) \\ (1+x)^{\frac{1}{2}}=\end{array}(1+x)n=1+nx+1×2n(n−1)x2+…+1×2x…×rn(n−1)⋅(n−r+1)x+…(∣x∣<1,n∈R))(1+x)21=
1 Like
1 Answer
Share
0 Like
0 Comment
Not the question you are looking for? Ask here!
Enter question by text
Enter question by image
Unlock Smarter Learning with AskSia Super!
Join Super, our all-in-one AI solution that can greatly improve your learning efficiency.