Asksia AI LOGO

Sia

Question
Math
Posted 7 months ago
give me all correct answers
一、单项选择题(共 6 题,18.0 分)
1. 设函数 z=z(x,y)\mathrm{z}=\mathrm{z}(\mathrm{x}, \mathrm{y}) 由方程 z33xyz=8\mathrm{z}^{3}-3 x y z=8 硝定, 则 dz(0,1)=()\left.\mathrm{dz}\right|_{(0,1)}=(\quad).
(A) 2dx-2 d x
(B) 2dx2 \mathrm{dx}
(C) 12dx-\frac{1}{2} \mathrm{dx}
(D) 12dx\frac{1}{2} \mathrm{dx}
2. 函数 u(x,y,z)=xy2u(x, y, z)=x y^{2} 在点 (1,1,1)(1,1,1) 处的方向导数的最小值为( ).
(A) 3-\sqrt{3}
(B) -3
(C) 3-\sqrt{3}
(D) -2
(A) xyf12+xf22y3-\frac{x y f_{12}+\mathrm{xf}_{22}}{y^{3}}
(B) f22f_{22}
(C) 1y2f2-\frac{1}{y^{2}} f_{2}
4. 已矢曲面 z=4x2y2z=4-x^{2}-y^{2} 在点 PP 处的切平面平行于 2x+2y+z=12 x+2 y+z=1, 则点 PP 的坐标为 (( ).
(A) (1,1,2)(1,1,2)
(B) (1,1,2)(-1,-1,2)
(C) (1,1,2)(-1,1,2)
(D) (1,1,1)(1,-1,1)
5. 若级数 n=1(1)n1ln1nn22\sum_{n=1}^{\infty}(-1)^{n-1} \frac{\ln ^{1} n}{n^{2-2}}n=1sin(nπ+1n21)\sum_{n=1}^{\infty} \sin \left(n \pi+\frac{1}{n^{2-1}}\right) 都条件收敛, 则常数 λ\lambda 的取值范目为( ).
(A) 1<λ<21<\lambda<2
(B) 1<λ<321<\lambda<\frac{3}{2}
(C) 1λ<21 \leq \lambda<2
(D) 1<λ321<\lambda \leq \frac{3}{2}
6.函数 f(x,y)=x4+y4x22xyy2f(x, y)=x^{4}+y^{4}-x^{2}-2 x y-y^{2} 在点 (1,1)(1,1) 处 ( ).
(A)无法判断是否取极值
(B)不取极值
(C)取极大值
(D)取极小值

二、填空题(共 6 题, 18.0 分)
7. 将函数 f(x)=14x\mathrm{f}(\mathrm{x})=\frac{1}{4-\mathrm{x}} 在点 x0=1x_{0}=1 处展开成儒级数(指明收敛域) \qquad .
8. 设罙级数 n=1an(x1)n\sum_{n=1}^{\infty} a_{n}(x-1)^{n}x=3\mathrm{x}=-3 处条件收敛, 在 x=5\mathrm{x}=5 处发散, 则萤级数 n=1an(2x+\sum_{n=1}^{\infty} a_{n}(2 \mathrm{x}+ 1) n{ }^{n} 的收敛域为 \qquad -
9. 设 y\mathrm{y} 为曲线: x=costy=sint,z=lncost,(0tπ6)\mathrm{x}=\operatorname{cost} \mathrm{y}=\operatorname{sint}, \mathrm{z}=\ln \cos \mathrm{t},\left(0 \leq \mathrm{t} \leq \frac{\pi}{6}\right), 则 Γx2ds=\int_{\Gamma} x^{2} d s= \qquad -.
10. 曲线 {x2+y2+z2=4x2+y2=2x\left\{\begin{array}{c}x^{2}+y^{2}+z^{2}=4 \\ x^{2}+y^{2}=2 x\end{array}\right. 在点 (1,1,2)(1,1, \sqrt{2}) 处的法平面方桯为 \qquad -.
11. 敞分方程 x3y=3x^{\prime}-3 y=-3 洞足 y(1)=2y(1)=2 的特解是 y(x)=y(x)= \qquad -
12. 设 f(x)\mathrm{f}(\mathrm{x}) 是周期为 2π2 \pi 的周期函数, 其中当 x[π,π)\mathrm{x} \in[-\pi, \pi) 时, f(x)={2,πx<01,0x<π\mathrm{f}(\mathrm{x})=\left\{\begin{array}{c}-2,-\pi \leq x<0 \\ 1,0 \leq x<\pi\end{array}\right.S(x)S(x)f(x)f(x) 的傅里叶级数的和函数, 则 S(7π)=S(7 \pi)= - \qquad
Sign in to unlock the answer
Answer from Sia
Posted 7 months ago
Solution by Steps
step 1
Given the equation z33xyz=8z^3 - 3xy z = 8, we need to find dzdx(0,1)\left.\frac{dz}{dx}\right|_{(0,1)}
step 2
To find dzdx\frac{dz}{dx}, we implicitly differentiate both sides of the equation with respect to xx: 3z2dzdx3yz3xydzdx=0 3z^2 \frac{dz}{dx} - 3y z - 3xy \frac{dz}{dx} = 0
step 3
Simplify and solve for dzdx\frac{dz}{dx}: dzdx(3z23xy)=3yz \frac{dz}{dx} (3z^2 - 3xy) = 3yz dzdx=3yz3z23xy \frac{dz}{dx} = \frac{3yz}{3z^2 - 3xy}
step 4
Substitute x=0x = 0 and y=1y = 1 into the equation: z3301z=8 z^3 - 3 \cdot 0 \cdot 1 \cdot z = 8 z3=8 z^3 = 8 z=2 z = 2 dzdx=312322301=612=12 \frac{dz}{dx} = \frac{3 \cdot 1 \cdot 2}{3 \cdot 2^2 - 3 \cdot 0 \cdot 1} = \frac{6}{12} = \frac{1}{2}
[1] Answer
D
Key Concept
Implicit Differentiation
Explanation
Implicit differentiation is used to find the derivative of a function defined by an equation involving multiple variables.
Solution by Steps
step 1
Given the function u(x,y,z)=xy2u(x, y, z) = xy^2, we need to find the minimum value of the directional derivative at the point (1,1,1)(1,1,1)
step 2
The gradient of uu is: u=(ux,uy,uz)=(y2,2xy,0) \nabla u = \left( \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial z} \right) = \left( y^2, 2xy, 0 \right) At (1,1,1)(1,1,1), the gradient is: u=(12,211,0)=(1,2,0) \nabla u = (1^2, 2 \cdot 1 \cdot 1, 0) = (1, 2, 0)
step 3
The minimum value of the directional derivative is given by the negative of the magnitude of the gradient: Minimum value=u=12+22+02=5 \text{Minimum value} = -\|\nabla u\| = -\sqrt{1^2 + 2^2 + 0^2} = -\sqrt{5}
[2] Answer
B
Key Concept
Directional Derivative
Explanation
The minimum value of the directional derivative is the negative of the magnitude of the gradient vector.

Not the question you are looking for? Ask here!

Enter question by text

Enter question by image

Unlock Smarter Learning with AskSia Super!

Join Super, our all-in-one AI solution that can greatly improve your learning efficiency.

30% higher accuracy than GPT-4o
Entire learning journey support
The most student-friendly features
Study Other Question